Exercise 57

Find a formula for a function f that satisfies the following conditions:

$$
\begin{array}{ll}
\lim _{x \rightarrow \pm \infty} f(x)=0, & \lim _{x \rightarrow 0} f(x)=-\infty, \quad f(2)=0 \\
\lim _{x \rightarrow 3^{-}} f(x)=\infty, & \lim _{x \rightarrow 3^{+}} f(x)=-\infty
\end{array}
$$

Solution

To make $f(2)=0$, put $x-2$ in the numerator. To make $\lim _{x \rightarrow \pm \infty} f(x)=0$, make sure the degree of the denominator is higher than that of the numerator. To make $\lim _{x \rightarrow 0} f(x)=-\infty$, put x^{2} in the denominator. To make $\lim _{x \rightarrow 3^{ \pm}} f(x)=\mp \infty$, place $3-x$ in the denominator.

$$
f(x)=\frac{x-2}{x^{2}(3-x)}
$$

